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Formal Property Verification

• What is formal property verification?

• Verification of formal properties?

• Formal methods for property verification?

• Both are important requirements

• Broad Classification

• Dynamic property verification (DPV)

• Static/Formal property verification (FPV)
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Dynamic Property Verification (DPV)
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Formal Property Verification (FPV)
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Temporal Logics (Timed / 

Untimed, Linear Time / 

Branching Time): LTL, CTL

Early Languages: Forspec

(Intel), Sugar (IBM), Open Vera 

Assertions (Synopsys)

Current IEEE Standards: 

SystemVerilog Assertions 

(SVA), 

Property Specification 

Language (PSL)



Formal Property Verification

The formal method is called “Model Checking”

• The algorithm has two inputs

• A finite state transition system (FSM) representing the implementation

• A formal property representing the specification

• The algorithm checks whether the FSM “models” the property

• This is an exhaustive search of the FSM to see whether it has any path / state that refutes the 

property.
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A transition system TS is a tuple (S,Act,→, I ,AP,L )

where

• S is a set of states

• Act is a set of actions

• → ⊆ S × Act× S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Transition Systems and Kripke Structures
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A Kripke Structure TS is a tuple (S, →, I ,AP, L )

where

• S is a set of states (inputs are part of the state)

• → ⊆ S × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

→  is a total relation, that is, every state has a next 

state (could be itself)

S is finite

In this discussion we shall use the notion of Kripke structures
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{y} {x}

{r}
{x r y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

A simple hardware circuit with Input variable x, Output variable y, and Register r

Output function ¬(x ⊕r ) and register evaluation function x∨r

Modeling Sequential Circuits as Kripke Structures
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Consider two possible state-labelings:

• Let AP = { x, y, r }

– L ( ( x = 0, r = 1) ) = { r } and L ( ( x = 1, r = 1) ) = { x, r, y }

– L ( ( x = 0, r = 0) ) = { y } and L ( ( x = 1, r = 0) ) = { x }

– property e.g., “once the register is one, it remains one”

• Let AP' = { x, y } – the register evaluations are now “invisible”

– L ( ( x = 0, r = 1) ) = ∅ and L ( ( x = 1, r = 1) ) = { x, y }

– L ( ( x = 0, r = 0) ) = { y } and L ( ( x = 1, r = 0) ) = { x }

– property e.g., “the output bit y is set infinitely often”

Atomic Propositions
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x=0 r=0
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x=1 r=0

x=1 r=1

{y} {x}

{ }
{x y}

x=0 r=0

x=0 r=1
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Automata over Infinite Words
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{y} {x}

{r}
{x r y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

• A run of this state machine is an infinite sequence of 

states.

• If we observe only the state labels, then each state 

is viewed as a combination of labels (note that two 

states can have same labels)

Runs of the transition system:

 = { { }, {x}, {y}, {r}, {x y}, {x r}, {r y}, {x r y} } = 2AP

Each run of the system belongs to (2AP) that is, the 

set of infinite words over 

Runs(TS)  (2AP)

Runs of the formal property:

Linear time properties are also defined over  = 2AP

Each run in (2AP) either satisfies a given formal 

property  or is a counterexample

Runs()  (2AP)

TS ⊨  ( read as TS models  ) iff Runs(TS)  Runs() 



Model Checking Linear Time Properties
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• Linear Temporal Logic (LTL) captures an expressive subset of 

Omega Regular Languages

• SVA is derived from LTL

• Given a LTL property, , to determine whether TS ⊨  we do 

the following:

• Since TS ⊨  iff Runs(TS)  Runs(), it follows that 

Runs(TS)  [(2AP)  Runs()] = 

Runs()

Runs(TS)

(2AP)

• We create an automaton, B , which accepts runs satisfying , that is, runs in (2AP)  Runs()

• We compute the product of TS with B and check whether the product has any accepting run. 

• If not then TS |= . 

• Otherwise, the accepting run is a counter-example trace.



Nondeterministic Büchi automata

• NFA (and DFA) are incapable of accepting infinite words

• A nondeterministic Büchi automaton (NBA) 𝑨 is a tuple (Q, Σ, δ, Q0, F ) where:

• Q is a finite set of states with Q0 ⊆Q a set of initial states

• Σ is an alphabet

• δ : Q ×Σ → 2Q  is a transition function

• F ⊆Q is a set of accept (or: final) states

• NBAs are structurally similar to NFAs. 

• But they have separate acceptance criteria

• An NFA accepts its (finite) input if some run of the NFA reaches an accept state at the end of the input

• A Büchi automaton accepts its infinite length input if at least one of the accept states is visited infinitely 

often

1
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Linear Time Properties can be converted to NBA
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2

a

b
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a U b

q

r

Tp

q

r

p U (q U r)

GF(p  Xp)

T

p

T

p

T

Here the Büchi acceptance criteria 

ensures that p  Xp is satisfied 

infinitely often.

DFAs and NFAs are equally powerful, and 

therefore many algorithms convert a NFA to a DFA 

before product construction.

Non-deterministic Büchi automata are strictly 

more powerful than deterministic Büchi automata.

Therefore we do not attempt to convert a NBA to a 

DBA.



LTL Model Checking – An Overview
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Negation of property

‘No’ (counter-example)

Product transition system
𝑇𝑆 ⨂𝒜¬𝜑

Transition system TS

Check 
𝑇𝑆 ⨂𝒜¬𝜑 ⊨ 𝑃𝑝𝑒𝑟𝑠(𝒜)

System

‘Yes’

Model of system

Büchi automaton 𝒜¬𝜑

Generalised Büchi Automaton 𝒢¬𝜑

Model

Checker

LTL formula 𝜑

A persistence 

property for an NBA 

𝒜 is

FG (“no final state”)



Our running example: Priority Arbiter
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Design-under-test (DUT)

Specification: Formal Property 

• One of the grant lines is always asserted

• In Linear Temporal Logic:  G( g1  g2 )

r1

r2

g1

g2

We wish to check whether: TS(DUT) ⊨ G( g1  g2 )



The Kripke Structure: TS(DUT)
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0000 0001
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Start

Transition Relation:

g1  r1

g2 r1  r2   g1

Initial State:  
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r1

r2

g1

g2
This is only for demonstration !!

We will never create this explicitly, but encode it in SAT / BDD



Now we handle the specification

Our property:  = G[ g1  g2 ]

• Either of the grant lines is always active

We will create the automaton, A, for 

•  = F[ g1  g2 ]

• Sometime both grant lines will be inactive

We will then search for a common run between this automaton and the TS(DUT) from the implementation

1
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Intuitive steps towards creating the automaton for the property

• Let us consider our property F( g1  g2 ) // Eventually q is true

• Using q as a short form for g1  g2 we can rewrite it as:

Fq = q  XFq // Either q is true now or Fq is true in the next state

• Therefore we can classify the states in a run into the following types:

• States that satisfy q

• States that do not satisfy q but satisfy XFq

• States that do not satisfy q and do not satisfy XFq

• The first two types are labeled by Fq

1
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The automaton for our property
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Our property:  Fq where q = g1  g2

q, XFq q, XFq

q, XFq q, XFq

Fq

Fq

Fq

• States that satisfy q and states that do not satisfy q 

but satisfy XFq are labeled with Fq

• We add the following edges: 

• From states satisfying XFq to states labeled with Fq

• From states satisfying XFq to states satisfying q

• But the self loop in the state labeled {q, XFq} is 

problematic

• It allows the satisfaction of q to be postponed 

forever, in which case Fq does not hold



The Büchi Automaton
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Our property:  Fq where q = g1  g2

• The self loop in the state labeled {q, XFq} is 

problematic

• It allows the satisfaction of q to be postponed 

forever, in which case Fq does not hold

• By defining the remaining three states as accept 

states, we force the accepting runs to come out of the 

state labeled {q, XFq}

• Recall that the Büchi acceptance criterion states 

that accept states must be visited infinitely often.

q, XFq q, XFq

q, XFq q, XFq

Fq

Fq

Fq

q, XFq q, XFq

q, XFq



Is the product non-empty?

2
0

The common run is shown in red. Product is non-empty. 

Conclusion: TS(DUT) ⊨ G( g1  g2 ) is not true. The counterexample is the run in red.

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

Unreachable states

1100 1101

1110 1111

Start

q-labeled

states

q, XFq q, XFq

q, XFq q, XFq

Fq

Fq

Fq
q, XFq q, XFq

q, XFq



Computational facts

• If a LTL property has k sub-formulas, then the number of states in its automaton may have O(2k) states

• Decomposing the property into a conjunction of smaller properties helps in containing the size of this 

automaton

• It also helps the FPV tool to prune away parts of the implementation before making the emptiness check

• LTL model checking is PSPACE-complete, but linear in the size of the implementation

• However, the main bottleneck is in the size of the implementation, which is why we use succinct 

representations.

2
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“Elementary” Sets for 𝜑

• For an LTL-property 𝜑, the set closure(𝜑) consists of:

• All sub-formulas 𝝍 of 𝜑 and their negation ¬𝝍.

The set B⊆ closure(𝜑) is elementary if:

1. B is logically consistent - if for all 𝜑1 ∧ 𝜑2 , 𝝍 ∈ closure(𝜑):

• 𝜑1 ∧ 𝜑2 ∈ 𝑩 ⟺ 𝜑1 ∈ 𝑩 and 𝜑2 ∈ 𝑩

• 𝝍 ∈ 𝑩 ⟹ ¬𝝍 ∉ 𝑩

• true ∈ closure(𝜑) ⟹ true ∈ 𝑩

2. B is locally consistent – if for all 𝜑1 U 𝜑2 ∈ closure(𝜑):

• 𝜑2 ∈ 𝑩⟹ 𝜑1 U 𝜑2 ∈ 𝑩

• 𝜑1 U 𝜑2 ∈ 𝑩 and 𝜑2 ∉ 𝑩⟹ 𝜑1 ∈ 𝑩

3. B is maximal – for all 𝝍 ∈ closure(𝜑):

• 𝝍 ∉ 𝑩⟹ ¬𝝍 ∈ 𝑩
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The GNBA for the LTL-property 𝜑

• A  Generalized NBA has multiple sets of accept states, F1, …, Fk each of which must be visited infinitely often in 
an accepting run

• For the LTL-property 𝜑, let 𝓖𝝋 = (Q, 2AP, 𝜹, Q0, 𝓕), where

• Q is the set of elementary sets of formulas B ⊆ closure(𝜑).

• Q0 = { B ∈ Q | 𝜑 ∈ 𝑩}

• 𝓕 = { { B ∈ Q | 𝜑1 U 𝜑2 ∉ 𝑩 or 𝜑2 ∈ 𝑩} | 𝜑1 U 𝜑2 ∈ closure(𝜑) }

• The transition relation 𝜹: Q x 2AP ⟶ Q is given by:

• 𝜹( B, B ∩ 𝑨𝑷 ) is the set of all elementary sets of formulas B’ satisfying:

• For every X𝝍 ∈ closure(𝜑) : 

𝐗𝝍 ∈ 𝑩⟺𝝍 ∈ 𝑩’

AND

• For every 𝜑1 U 𝜑2 ∈ closure(𝜑):

𝜑1 U 𝜑2 ∈ 𝑩 ⟺ (𝜑2 ∈ 𝑩 ∨ 𝜑1 ∈ 𝑩 ∧ 𝜑1 U 𝜑2 ∈ 𝑩
′ )

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
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GNBA for 𝜑 = Oa
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GNBA for 𝜑 = a U b
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Emptiness Check

• Emptiness check for a NFA is to find whether any accepting run exists

• Can be decided by finding whether any accept state is reachable

• We can do this using the symbolic reachability methods discussed earlier

• Emptiness check for a NBA is to find whether any accepting run exists using the Büchi acceptance criterion

• Can be decided by finding whether any strongly connected component containing one or more accept 

states is reachable

• Once we find the states in strongly connected components with accept states, we can use the symbolic 

reachability methods to find whether such components are reachable from the initial states

• How to find strongly connected components using symbolic search?
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Exercises

1.

2.
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1. We consider the LTL formula: 

 𝜑 = 𝐺(𝑎 ⇒ (¬𝑏 𝑈 (𝑎  𝑏))) 

over the set AP = {a, b} of atomic propositions and want to 

check 𝑇𝑆 ⊨ 𝜑 with respect to the transition system on the 

right. 

 

(a) Construct a NBA, 𝐴¬𝜑 , for the negation of 𝜑. You may 

do this intuitively. (Hint: Four states suffice) 

(b) Construct 𝑇𝑆⨂𝐴¬𝜑  

(c) Show how the product can be analyzed to determine whether 𝑇𝑆 ⊨ 𝜑 

(a) Let AP = { a } and  = (a   a ) U  a  an LTL formula over AP 

(i) Compute all elementary sets with respect to . (Hint: There are five elementary sets) 

(ii) Construct the generalized Büchi automaton (GNBA) G such that L( G ) = Words() 



CTL Model Checking

• Need only to show methodology for EX, EU, EG.

• Other modalities can be expressed in terms of EX, EU, EG.

• AFp = EG p

• AGp = EF p

• A(p U q) = E[q U (p  q)]  EG q 

2
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Example: EX p
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P

R: Transition

Relation

Image-1(P,R)

EX P

EXp = { v | v ( v, v )  R  p  L( v ) } 



Example:  EF g

3
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gg  EX gg  EX(g  EX g). . .

Least

Fix Point

Given a model M =  AP, S, S0, R, L  and 

Sg the sets of states satisfying g in M

procedure CheckEF (Sg )

Q := emptyset;  Q’ := Sg ;

while Q  Q’  do

Q := Q’;

Q’ := Q  { s |  s' [ R(s,s’)  Q(s’) ]  }

end while

Sf := Q ;   return(Sf )
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Example:  EG g

EG g is calculated as

g  EX g gg  EX(g  EX g)...

Greatest 

Fix Point

Given a model M =  AP, S, S0, R, L  and 

Sg the sets of states satisfying g in M

procedure CheckEG (Sg)

Q := S ;  Q’ := Sg ;

while Q  Q’ do

Q := Q’;

Q’ := Q { s |  s' [ R(s,s’)  Q(s’) ] }

end while

Sf := Q ;   return(Sf )



32

Checking Nested Formulas

E F( p /\ EG q)

p /\ EG q

E G

EG qp 

/\

E F

q

Bottom Up
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Checking Nested formulas

p state

q state

¬p ۸ ¬q state

¬qEG¬qp۸EG¬qEF(p۸EG¬q)

EF (p ۸ EG ¬q)


