Model Checking

CS60030 FORMAL SYSTEMS

FNAE, FASc,

A K Singh Distinguished Professor in Al,

Dept of Computer Science & Engineering
Indian Institute of Technology Kharagpur
Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

p ! : l
g __r—’.”* W

(‘.I" -

e T (=t
e

A Ouery Dr ven
Vahdato Proposmonal A\ Automatic model —— Diagrams

V Buildi f
a“g,ynar,“és“ém,em Alqorlthms Abstraction Moduar
Constraint .f. Quantification t. abstraction Detection OueryM mory
Verification:: 1
S Measurement Counterexamples Dyr\amlc s aGlepe.ratlor:_‘ Rdeactlvi “’e'e"ce
araware I'OVIT\QRod ctions
Godel Runtlme I SIS nayss Revisited

ificati Ouanthers o ane\l Component By AbStraCt s lrh{?rapyglglofnleigfmemem
LTL
Logical

Ho ible M o d el S Integrity we unit @ s
Re resentatlon SAT Te ‘ °'“’"e’a"“" A””'“' " roqram h k
" nnfmts SUCCInCt tlme TeStI ng Parameterized Programs

Fault-tolerant
il S stermnsbsih
e Untr:lseted Co g nts yS Yy Srt-gmgwl_oegf D I St rI

Stath grami (emporal s DeveloDment Fuzzy Compatbhty

Safety C°'“PU‘3'°nS SOftware Queries Reachabity

Coverage V|rtua| language Tree

FORMAL METHODS FOR SAFETY CRITICAL SYSTEMS

Formal Property Verification

« What is formal property verification?

« Verification of formal properties?
 Formal methods for property verification?

« Both are important requirements
« Broad Classification

 Dynamic property verification (DPV)
- Static/Formal property verification (FPV)

Dynamic Property Verification (DPV)

Z E
Coverage defs Constraints
Simulation Platform
) [o ton manor] [Test generation engine]
Property Specs
(user—defined) gl Sproparty checkers)
e
\ J
- ;—
f
~ - A'_./-_‘:;
. Master-1 A N
(bridge 1o 4 7
>{ EE l - g1 = peripheral bus) | v
} \ 1—I Memory

clk g clk—generatorj N—V

P i N g ' :
>0 i '——{ FF - g2 - Master—2 A—N
[o (processor) \ J

r2 = g) AL
Device under Test (DUT) -

A

Test environment modeled by the Test—-Bench

" A
DUT Interface

Formal Property Verification (FPV)

Temporal Logics (Timed /
Untimed, Linear Time /
Branching Time): LTL, CTL

Early Languages: Forspec
(Intel), Sugar (IBM), Open Vera
Assertions (Synopsys)

Current IEEE Standards:
SystemVerilog Assertions
(SVA),

Property Specification
Language (PSL)

Model Checker
(formal property verifier)

p1
p2
r
~1 FF = g1
clk
SN [>;:——\.
~T)= FF -~ g2
[—:..__/

Device under Test (DUT)

r2

1T

-~

¥ ~
’g.f s

FSM model

State—machine

extraction

Yes!!
The DUT satisfies the
properties under all scenarios

OR

FPV Tool

-

S W e W W W N W
& l

2 | l
a1 |

arror!
Counter-example trace

o

Formal Property Verification

The formal method is called “Model Checking”

* The algorithm has two inputs
* Afinite state transition system (FSM) representing the implementation
- Aformal property representing the specification

* The algorithm checks whether the FSM “models” the property

 This is an exhaustive search of the FSM to see whether it has any path / state that refutes the
property.

Transition Systems and Kripke Structures

A transition system TS is a tuple (S,Act,—,l ,AP L) A Kripke Structure TS is atuple (S, —,/,AP,L)
where where
- S is a set of states - S is a set of states (inputs are part of the state)
- Act is a set of actions - — € § X § is atransition relation
- —> €& § X Act X S is atransition relation - | € S is a set of initial states
- | € S is a set of initial states - AP is a set of atomic propositions
- AP is a set of atomic propositions - L : S — 2/Pis alabeling function

- L : S — 2*Pis alabeling function
— is atotal relation, that is, every state has a next

S and Act are either finite or countably infinite state (could be itself)
S is finite

In this discussion we shall use the notion of Kripke structures

Modeling Sequential Circuits as Kripke Structures

~ ~
=0 r=0 J { x=1 r:Oj

y

ng

A simple hardware circuit with Input variable x, Output variable y, and Register r

Output function =(x @ r) and register evaluation function xvr

Atomic Propositions

Consider two possible state-labelings:

~ W .
- Let AP={x,y,r} ng:o =0 J
-L((x=0,r=1))={r}andL((x=1,r=1))={x,r,y}
- L((x=0,r=0)={y}andL((x=1r=0)={x} ngzo (=1
— property e.g., “once the register is one, it remains one” i
~ W
- Let AP ={ x,y} - the register evaluations are now “invisible” ng:o r:oj

- L((x=0r=1))=@andL((x=1r=1))={x,y}

- L((x=0,r=0)={y}andL((x=1,r=0))={x}

— property e.g., “the output bit y is set infinitely often” &FO r=1
{}

Automata over Infinite Words

{1y} {x}

B B
ngzo =0) { x=1r=0) « Arun of this state machine is an infinite sequence of
states.
 If we observe only the state labels, then each state
— — is viewed as a combination of labels (note that two
x=0 r=1 x=1 r=1
& j\) states can have same labels)
{r} {xry}
Runs of the transition system: Runs of the formal property:
Z={{}{x vk {r} {xyh {xr}, {ry}, {xry}} = 2% Linear time properties are also defined over X = 2AP
Runs(TS) c (24P)® Runs(o) c (2*7)°

TS & ¢ (read as TS models ¢) iff Runs(TS) < Runs(o)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR o

Model Checking Linear Time Properties

(2AP)0)

» Linear Temporal Logic (LTL) captures an expressive subset of

Omega Regular Languages Runs(op)

 SVAis derived from LTL
« Given a LTL property, @, to determine whether TS = ¢ we do

[Runs(TS)]

the following:

* Since TS E ¢ iff Runs(TS) < Runs(o), it follows that
Runs(TS) N [(2AP)> — Runs(o)] = &

- We create an automaton, B_, which accepts runs satisfying —o, that is, runs in (24¥)* — Runs(¢)
* We compute the product of TS with B_ and check whether the product has any accepting run.

* Ifnotthen TS |= .

« Otherwise, the accepting run is a counter-example trace.

Nondeterministic Buchi automata

NFA (and DFA) are incapable of accepting infinite words

A nondeterministic Blichi automaton (NBA) A is a tuple (Q, Z, 8, Q,, F) where:
» Qs afinite set of states with Qy € Q a set of initial states
» 1 is an alphabet
« §:QxX — 22 is a transition function
« F =Qis a set of accept (or: final) states

NBAs are structurally similar to NFAs.

But they have separate acceptance criteria

« An NFA accepts its (finite) input if some run of the NFA reaches an accept state at the end of the input
« A Biichi automaton accepts its infinite length input if at least one of the accept states is visited infinitely
often

Linear Time Properties can be converted to NBA

Here the Buchi acceptance criteria
ensures that p A Xp is satisfied
infinitely often.

pU(qUr)

DFAs and NFAs are equally powerful, and
therefore many algorithms convert a NFA to a DFA
before product construction.

Non-deterministic Buchi automata are strictly
more powerful than deterministic Buichi automata.
Therefore we do not attempt to convert a NBA to a
DBA.

LTL Model Checking — An Overview
A persistence
l System [Negation of property] property for an NBA

A
FG (“no final state”)

A 4

\ 4

Model of system LTL formula ¢

\ 4

Generalised Buchi Automaton G_,

A 4

Transition system TS Blchi automaton A _,
Product transition system
l TS QA_,)
:
Check
Model
'S @A~y = Fpersiar Checker
‘Yes’ C ‘No’ (counter-example))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Our running example: Priority Arbiter

1MM— > g1 Specification: Formal Property

* One of the grant lines is always asserted

_DO'} > g2 * In Linear Temporal Logic: G(g1v g2)

r2—

Design-under-test (DUT)

We wish to check whether: TS(DUT) = G(g1v g2)

The Kripke Structure: TS(DUT)

PS /P NS Next
919, | raf2 | 9'109% 1/P

—
N 00 | 00 | 00 | xx

@ 00 | 01 | 01 | xx
> 00 | 10 10 XX

0110 0111 00 11 10 XX
01 00 00 XX

01 01 01 XX
01 10 10 XX
01 11 10 XX

7 10 00 00 XX
10 10 10 XX

Unreachable states 10 11 10 XX

-/ @ @ 11 | 00 00 XX
11 | 01 | 00 XX
1M " g1 - / S / 11 | 10 | 10 XX
11 | 11 10 XX
”— >>ZD_ 92 This is only for demonstration !!
9

We will never create this explicitly, but encode it in SAT / BDD

Transition Relation:
R=a
g, AL A—G,

Initial State:
r1=0, r;=0, 9,=0, g,=1

Now we handle the specification

Our property: ¢=G[g,va,]

« Either of the grant lines is always active

We will create the automaton, 2, for —o

* =@ =F[—g;A—0,]
« Sometime both grant lines will be inactive

We will then search for a common run between this automaton and the TS(DUT) from the implementation

Intuitive steps towards creating the automaton for the property

* Let us consider our property F(—g; A —9,) Il Eventually q is true
 Using q as a short form for —g, A —g, we can rewrite it as:

Fa=qv XFq [/l Either q s true now or Fq is true in the next state

» Therefore we can classify the states in a run into the following types:

- States that satisfy ¢

» States that do not satisfy g but satisfy XFq

- States that do not satisfy g and do not satisfy XFq
* The first two types are labeled by Fq

The automaton for our property

Our property: Fq where q =—g, A =0, States that satisfy g and states that do not satisfy q
but satisfy XFq are labeled with Fq

» We add the following edges:

 From states satisfying XFq to states labeled with Fq
 From states satisfying —XFq to states satisfying —q

» But the self loop in the state labeled {—q, XFq} is
problematic

|t allows the satisfaction of ¢ to be postponed
forever, in which case Fq does not hold

The Buchi Automaton

Our property: Fq where g =—g, A g,

The self loop in the state labeled {—q, XFq} is
problematic

It allows the satisfaction of ¢ to be postponed
forever, in which case Fq does not hold

By defining the remaining three states as accept
states, we force the accepting runs to come out of the
state labeled {—q, XFq}

« Recall that the Buchi acceptance criterion states
that accept states must be visited infinitely often.

s the product non-empty?

0110 0111

/™ @

Unreachable states

PO

{)

/

The common run is shown in red. Product is non-empty.
Conclusion: TS(DUT) = G(g1 v g2) is not true. The counterexample is the run in red.

Computational facts

 |fa LTL property has k sub-formulas, then the number of states in its automaton may have O(2*) states

« Decomposing the property into a conjunction of smaller properties helps in containing the size of this
automaton

* It also helps the FPV tool to prune away parts of the implementation before making the emptiness check

* LTL model checking is PSPACE-complete, but linear in the size of the implementation

« However, the main bottleneck is in the size of the implementation, which is why we use succinct
representations.

“Elementary” Sets for ¢

* Foran LTL-property ¢, the set closure(¢p) consists of:

 All sub-formulas p of ¢ and their negation —1.

The set B closure(¢p) is elementary if:

1. Bis logically consistent - if for all ¢, A @, , P € closure(¢p):
- @ NP, EB & @,EBandgp, €B
- YEB =Y ¢B
* true € closure(p) = true € B

2. Bis locally consistent - if for all ¢, U ¢, € closure(g):
- ¢, €EB=>¢p,Up,EB
- ¢p.Up,eBandgp, € B— @, €EB

3. B is maximal -for all y» € closure(¢p):

- Yy ¢B= yYeERB

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The GNBA for the LTL-property ¢

* A Generalized NBA has multiple sets of accept states, F,, ..., F, each of which must be visited infinitely often in
an accepting run

- Forthe LTL-property ¢, let G, = (Q, 2*%, 8, Q,, F), where

* Qs the set of elementary sets of formulas B < closure(¢p).
- Q={BeQ|¢peEB}

- F={{BeQ|p;Ugp, & Borg, € B}| U g, € closure(¢) }

* The transition relation 6: Q x 24P — Q is given by:
 §(B,B N AP)is the set of all elementary sets of formulas B’ satisfying:
* Forevery Xy € closure(ep) :
XY eEBoYeEPB
AND
* Forevery ¢, U ¢, € closure(¢p):
p1Up,e B= (p,€B V(p,EB A, U@, €B'))

23

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

GNBA for ¢ = Oa

a
{/"‘\} B, B
e — N a : ™
e O) ,;{ @70 a},
—a '
—a a
B.g _—] a B 4
- Y
/~ ~ 0\
w00 (w0
_/
—a

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

GNBAforg=aUb

H{\/ { a, _'ba a U b } :' lll "

7 ' / N
- { ﬁa,‘b,fz Uby |
BQ [_ /_;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Emptiness Check

« Emptiness check for a NFA is to find whether any accepting run exists

« Can be decided by finding whether any accept state is reachable
» We can do this using the symbolic reachability methods discussed earlier

« Emptiness check for a NBA is to find whether any accepting run exists using the Blichi acceptance criterion
« Can be decided by finding whether any strongly connected component containing one or more accept
states is reachable

« Once we find the states in strongly connected components with accept states, we can use the symbolic
reachability methods to find whether such components are reachable from the initial states

« How to find strongly connected components using symbolic search?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Exercises

1. LetAP={a}andp=(@An Oa)u-a an LTL formula over AP

(i) Compute all elementary sets with respect to ¢. (Hint: There are five elementary sets)

(i) Construct the generalized Bichi automaton (GNBA) Gy such that Lo(Ge) = Words(¢)

2. We consider the LTL formula:

10

@ =G(a= (=bU(a A\b))) TS -
over the set AP = {a, b} of atomic propositions and want to) S0
check TS k& ¢ with respect to the transition system on the
right.
S3 |
(@) ConstructaNBA, A_,, for the negation of ¢. You may {a}

do this intuitively. (Hint: Four states suffice)
(b) Construct TS®A_,,

(c) Show how the product can be analyzed to determine whether TS = ¢

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

§2

{a, b}

CTL Model Checking

* Need only to show methodology for EX, EU, EG.

« Other modalities can be expressed in terms of EX, EU, EG.
 AFp=—-EG—p
* AGp=—EF —p
* AlpUq)=—E[-qU(=pA—-q)] A-EC—q

Example: EXp

Image'(P,R)

R: Transition
Relation

EXP P

EXp= {v|3v(v,V)eRApeL(V)}

Example: EF ¢

T
gv EX(gv EXQg)
/ /

Least
Fix Point

Given a model M= (AP, S, SO, R, L) and
S, the sets of states satisfying g in M

procedure CheckEF (S,)
Q :=emptyset; Q':=S;
while Q= Q’ do

Q:=Q;

Q:=Qu{s| Is'[R(s,;s') AQ(s')] }
end while
S;:=Q; return(S;)

30

Example: EG g

EG g is calculated as

Given amodel M= (AP, S, SO, R, L) and

— S, the sets of states satisfying g in M
— -
Q g AEX(g A EX g) gAEXg g procedure CheckEG (S,)
\ Q:=S;Q’:=Sg;
= while Q = Q' do
Greatest Q:=Q;
Fix Point Q':=QN{s| 3s'[R(s,s’) A Q(s)] }
end while

S;:=Q; return(S;)

31

Checking Nested Formulas

EF(p/\EG—q
I | EF

/ A \

32

Checking Nested formulas

EF (p A EG =q)

pREGEMNR(5 Q)

33

