
Model Checking

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA,

FNAE, FASc,

A K Singh Distinguished Professor in AI,

Dept of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

CS60030 FORMAL SYSTEMS

Formal Property Verification

• What is formal property verification?

• Verification of formal properties?

• Formal methods for property verification?

• Both are important requirements

• Broad Classification

• Dynamic property verification (DPV)

• Static/Formal property verification (FPV)

2

Dynamic Property Verification (DPV)

3

Formal Property Verification (FPV)

4

Temporal Logics (Timed /

Untimed, Linear Time /

Branching Time): LTL, CTL

Early Languages: Forspec

(Intel), Sugar (IBM), Open Vera

Assertions (Synopsys)

Current IEEE Standards:

SystemVerilog Assertions

(SVA),

Property Specification

Language (PSL)

Formal Property Verification

The formal method is called “Model Checking”

• The algorithm has two inputs

• A finite state transition system (FSM) representing the implementation

• A formal property representing the specification

• The algorithm checks whether the FSM “models” the property

• This is an exhaustive search of the FSM to see whether it has any path / state that refutes the

property.

5

A transition system TS is a tuple (S,Act,→, I ,AP,L)

where

• S is a set of states

• Act is a set of actions

• → ⊆ S × Act× S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Transition Systems and Kripke Structures

6

A Kripke Structure TS is a tuple (S, →, I ,AP, L)

where

• S is a set of states (inputs are part of the state)

• → ⊆ S × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

→ is a total relation, that is, every state has a next

state (could be itself)

S is finite

In this discussion we shall use the notion of Kripke structures

XOR

OR

NOT

r

x y

{y} {x}

{r}
{x r y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

A simple hardware circuit with Input variable x, Output variable y, and Register r

Output function ¬(x ⊕r) and register evaluation function x∨r

Modeling Sequential Circuits as Kripke Structures

7

Consider two possible state-labelings:

• Let AP = { x, y, r }

– L ((x = 0, r = 1)) = { r } and L ((x = 1, r = 1)) = { x, r, y }

– L ((x = 0, r = 0)) = { y } and L ((x = 1, r = 0)) = { x }

– property e.g., “once the register is one, it remains one”

• Let AP' = { x, y } – the register evaluations are now “invisible”

– L ((x = 0, r = 1)) = ∅ and L ((x = 1, r = 1)) = { x, y }

– L ((x = 0, r = 0)) = { y } and L ((x = 1, r = 0)) = { x }

– property e.g., “the output bit y is set infinitely often”

Atomic Propositions

8

{y} {x}

{r}
{x r y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

{y} {x}

{ }
{x y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

Automata over Infinite Words

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

{y} {x}

{r}
{x r y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

• A run of this state machine is an infinite sequence of

states.

• If we observe only the state labels, then each state

is viewed as a combination of labels (note that two

states can have same labels)

Runs of the transition system:

 = { { }, {x}, {y}, {r}, {x y}, {x r}, {r y}, {x r y} } = 2AP

Each run of the system belongs to (2AP) that is, the

set of infinite words over 

Runs(TS)  (2AP)

Runs of the formal property:

Linear time properties are also defined over  = 2AP

Each run in (2AP) either satisfies a given formal

property  or is a counterexample

Runs()  (2AP)

TS ⊨  (read as TS models ) iff Runs(TS)  Runs()

Model Checking Linear Time Properties

1
0

• Linear Temporal Logic (LTL) captures an expressive subset of

Omega Regular Languages

• SVA is derived from LTL

• Given a LTL property, , to determine whether TS ⊨  we do

the following:

• Since TS ⊨  iff Runs(TS)  Runs(), it follows that

Runs(TS)  [(2AP)  Runs()] = 

Runs()

Runs(TS)

(2AP)

• We create an automaton, B , which accepts runs satisfying , that is, runs in (2AP)  Runs()

• We compute the product of TS with B and check whether the product has any accepting run.

• If not then TS |= .

• Otherwise, the accepting run is a counter-example trace.

Nondeterministic Büchi automata

• NFA (and DFA) are incapable of accepting infinite words

• A nondeterministic Büchi automaton (NBA) 𝑨 is a tuple (Q, Σ, δ, Q0, F) where:

• Q is a finite set of states with Q0 ⊆Q a set of initial states

• Σ is an alphabet

• δ : Q ×Σ → 2Q is a transition function

• F ⊆Q is a set of accept (or: final) states

• NBAs are structurally similar to NFAs.

• But they have separate acceptance criteria

• An NFA accepts its (finite) input if some run of the NFA reaches an accept state at the end of the input

• A Büchi automaton accepts its infinite length input if at least one of the accept states is visited infinitely

often

1
1

Linear Time Properties can be converted to NBA

1
2

a

b

T

a U b

q

r

Tp

q

r

p U (q U r)

GF(p  Xp)

T

p

T

p

T

Here the Büchi acceptance criteria

ensures that p  Xp is satisfied

infinitely often.

DFAs and NFAs are equally powerful, and

therefore many algorithms convert a NFA to a DFA

before product construction.

Non-deterministic Büchi automata are strictly

more powerful than deterministic Büchi automata.

Therefore we do not attempt to convert a NBA to a

DBA.

LTL Model Checking – An Overview

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

Negation of property

‘No’ (counter-example)

Product transition system
𝑇𝑆 ⨂𝒜¬𝜑

Transition system TS

Check
𝑇𝑆 ⨂𝒜¬𝜑 ⊨ 𝑃𝑝𝑒𝑟𝑠(𝒜)

System

‘Yes’

Model of system

Büchi automaton 𝒜¬𝜑

Generalised Büchi Automaton 𝒢¬𝜑

Model

Checker

LTL formula 𝜑

A persistence

property for an NBA

𝒜 is

FG (“no final state”)

Our running example: Priority Arbiter

1
4

Design-under-test (DUT)

Specification: Formal Property

• One of the grant lines is always asserted

• In Linear Temporal Logic: G(g1  g2)

r1

r2

g1

g2

We wish to check whether: TS(DUT) ⊨ G(g1  g2)

The Kripke Structure: TS(DUT)

1
5

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

Unreachable states

1100 1101

1110 1111

Start

Transition Relation:

g1  r1

g2 r1  r2   g1

Initial State:

r1=0, r2=0, g1=0, g2=1

PS
g1g2

I/P
r1r2

NS
g1g2

Next
I/P

00

00

00

00

01

01

01

01

10

10

10

10

11

11

11

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

10

00

01

10

10

00

00

10

10

00

00

10

10

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

r1

r2

g1

g2
This is only for demonstration !!

We will never create this explicitly, but encode it in SAT / BDD

Now we handle the specification

Our property:  = G[g1  g2]

• Either of the grant lines is always active

We will create the automaton, A, for 

•  = F[g1  g2]

• Sometime both grant lines will be inactive

We will then search for a common run between this automaton and the TS(DUT) from the implementation

1
6

Intuitive steps towards creating the automaton for the property

• Let us consider our property F(g1  g2) // Eventually q is true

• Using q as a short form for g1  g2 we can rewrite it as:

Fq = q  XFq // Either q is true now or Fq is true in the next state

• Therefore we can classify the states in a run into the following types:

• States that satisfy q

• States that do not satisfy q but satisfy XFq

• States that do not satisfy q and do not satisfy XFq

• The first two types are labeled by Fq

1
7

The automaton for our property

1
8

Our property: Fq where q = g1  g2

q, XFq q, XFq

q, XFq q, XFq

Fq

Fq

Fq

• States that satisfy q and states that do not satisfy q

but satisfy XFq are labeled with Fq

• We add the following edges:

• From states satisfying XFq to states labeled with Fq

• From states satisfying XFq to states satisfying q

• But the self loop in the state labeled {q, XFq} is

problematic

• It allows the satisfaction of q to be postponed

forever, in which case Fq does not hold

The Büchi Automaton

1
9

Our property: Fq where q = g1  g2

• The self loop in the state labeled {q, XFq} is

problematic

• It allows the satisfaction of q to be postponed

forever, in which case Fq does not hold

• By defining the remaining three states as accept

states, we force the accepting runs to come out of the

state labeled {q, XFq}

• Recall that the Büchi acceptance criterion states

that accept states must be visited infinitely often.

q, XFq q, XFq

q, XFq q, XFq

Fq

Fq

Fq

q, XFq q, XFq

q, XFq

Is the product non-empty?

2
0

The common run is shown in red. Product is non-empty.

Conclusion: TS(DUT) ⊨ G(g1  g2) is not true. The counterexample is the run in red.

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

Unreachable states

1100 1101

1110 1111

Start

q-labeled

states

q, XFq q, XFq

q, XFq q, XFq

Fq

Fq

Fq
q, XFq q, XFq

q, XFq

Computational facts

• If a LTL property has k sub-formulas, then the number of states in its automaton may have O(2k) states

• Decomposing the property into a conjunction of smaller properties helps in containing the size of this

automaton

• It also helps the FPV tool to prune away parts of the implementation before making the emptiness check

• LTL model checking is PSPACE-complete, but linear in the size of the implementation

• However, the main bottleneck is in the size of the implementation, which is why we use succinct

representations.

2
1

“Elementary” Sets for 𝜑

• For an LTL-property 𝜑, the set closure(𝜑) consists of:

• All sub-formulas 𝝍 of 𝜑 and their negation ¬𝝍.

The set B⊆ closure(𝜑) is elementary if:

1. B is logically consistent - if for all 𝜑1 ∧ 𝜑2 , 𝝍 ∈ closure(𝜑):

• 𝜑1 ∧ 𝜑2 ∈ 𝑩 ⟺ 𝜑1 ∈ 𝑩 and 𝜑2 ∈ 𝑩

• 𝝍 ∈ 𝑩 ⟹ ¬𝝍 ∉ 𝑩

• true ∈ closure(𝜑) ⟹ true ∈ 𝑩

2. B is locally consistent – if for all 𝜑1 U 𝜑2 ∈ closure(𝜑):

• 𝜑2 ∈ 𝑩⟹ 𝜑1 U 𝜑2 ∈ 𝑩

• 𝜑1 U 𝜑2 ∈ 𝑩 and 𝜑2 ∉ 𝑩⟹ 𝜑1 ∈ 𝑩

3. B is maximal – for all 𝝍 ∈ closure(𝜑):

• 𝝍 ∉ 𝑩⟹ ¬𝝍 ∈ 𝑩

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

The GNBA for the LTL-property 𝜑

• A Generalized NBA has multiple sets of accept states, F1, …, Fk each of which must be visited infinitely often in
an accepting run

• For the LTL-property 𝜑, let 𝓖𝝋 = (Q, 2AP, 𝜹, Q0, 𝓕), where

• Q is the set of elementary sets of formulas B ⊆ closure(𝜑).

• Q0 = { B ∈ Q | 𝜑 ∈ 𝑩}

• 𝓕 = { { B ∈ Q | 𝜑1 U 𝜑2 ∉ 𝑩 or 𝜑2 ∈ 𝑩} | 𝜑1 U 𝜑2 ∈ closure(𝜑) }

• The transition relation 𝜹: Q x 2AP ⟶ Q is given by:

• 𝜹(B, B ∩ 𝑨𝑷) is the set of all elementary sets of formulas B’ satisfying:

• For every X𝝍 ∈ closure(𝜑) :

𝐗𝝍 ∈ 𝑩⟺𝝍 ∈ 𝑩’

AND

• For every 𝜑1 U 𝜑2 ∈ closure(𝜑):

𝜑1 U 𝜑2 ∈ 𝑩 ⟺ (𝜑2 ∈ 𝑩 ∨ 𝜑1 ∈ 𝑩 ∧ 𝜑1 U 𝜑2 ∈ 𝑩
′)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
3

GNBA for 𝜑 = Oa

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
4

GNBA for 𝜑 = a U b

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
5

Emptiness Check

• Emptiness check for a NFA is to find whether any accepting run exists

• Can be decided by finding whether any accept state is reachable

• We can do this using the symbolic reachability methods discussed earlier

• Emptiness check for a NBA is to find whether any accepting run exists using the Büchi acceptance criterion

• Can be decided by finding whether any strongly connected component containing one or more accept

states is reachable

• Once we find the states in strongly connected components with accept states, we can use the symbolic

reachability methods to find whether such components are reachable from the initial states

• How to find strongly connected components using symbolic search?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
6

Exercises

1.

2.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
7

1. We consider the LTL formula:

 𝜑 = 𝐺(𝑎 ⇒ (¬𝑏 𝑈 (𝑎 𝑏)))

over the set AP = {a, b} of atomic propositions and want to

check 𝑇𝑆 ⊨ 𝜑 with respect to the transition system on the

right.

(a) Construct a NBA, 𝐴¬𝜑 , for the negation of 𝜑. You may

do this intuitively. (Hint: Four states suffice)

(b) Construct 𝑇𝑆⨂𝐴¬𝜑

(c) Show how the product can be analyzed to determine whether 𝑇𝑆 ⊨ 𝜑

(a) Let AP = { a } and  = (a   a) U  a an LTL formula over AP

(i) Compute all elementary sets with respect to . (Hint: There are five elementary sets)

(ii) Construct the generalized Büchi automaton (GNBA) G such that L(G) = Words()

CTL Model Checking

• Need only to show methodology for EX, EU, EG.

• Other modalities can be expressed in terms of EX, EU, EG.

• AFp = EG p

• AGp = EF p

• A(p U q) = E[q U (p  q)]  EG q

2
8

Example: EX p

2
9

P

R: Transition

Relation

Image-1(P,R)

EX P

EXp = { v | v (v, v)  R  p  L(v) }

Example: EF g

3
0

gg  EX gg  EX(g  EX g). . .

Least

Fix Point

Given a model M =  AP, S, S0, R, L  and

Sg the sets of states satisfying g in M

procedure CheckEF (Sg)

Q := emptyset; Q’ := Sg ;

while Q  Q’ do

Q := Q’;

Q’ := Q  { s | s' [R(s,s’)  Q(s’)] }

end while

Sf := Q ; return(Sf)

31

Example: EG g

EG g is calculated as

g  EX g gg  EX(g  EX g)...

Greatest

Fix Point

Given a model M =  AP, S, S0, R, L  and

Sg the sets of states satisfying g in M

procedure CheckEG (Sg)

Q := S ; Q’ := Sg ;

while Q  Q’ do

Q := Q’;

Q’ := Q { s | s' [R(s,s’)  Q(s’)] }

end while

Sf := Q ; return(Sf)

32

Checking Nested Formulas

E F(p /\ EG q)

p /\ EG q

E G

EG qp

/\

E F

q

Bottom Up

33

Checking Nested formulas

p state

q state

¬p ۸ ¬q state

¬qEG¬qp۸EG¬qEF(p۸EG¬q)

EF (p ۸ EG ¬q)

